Title: | Various R Programming Tools for Model Fitting |
---|---|
Description: | Various R programming tools for model fitting. |
Authors: | Gregory R. Warnes [aut, cre], Ben Bolker [aut], Thomas Lumley [aut], Randall C. Johnson [aut] (Contributions from Randall C. Johnson are Copyright (2005) SAIC-Frederick, Inc. Funded by the Intramural Research Program, of the NIH, National Cancer Institute, Center for Cancer Research under NCI Contract NO1-CO-12400), Airel Muldoon [ctb], Nitin Jain [aut], Dirk Enzmann [ctb], Søren Højsgaards [ctb], Ulrich Halekoh [ctb], Mark Schwartz [aut], Jim Rogers [aut] |
Maintainer: | Gregory R. Warnes <[email protected]> |
License: | GPL-2 |
Version: | 2.19.1 |
Built: | 2025-01-06 03:46:30 UTC |
Source: | https://github.com/r-gregmisc/gmodels |
Return a vector for cm in estimable()
.to.est(obj, params)
.to.est(obj, params)
obj |
estimable object |
params |
character vector of names or logical vector with one element per model parameter selecting desrired parameter(s). |
Randy Johnson, Laboratory of Genomic Diversity at NCI-Frederick
Compute and display confidence intervals for model estimates. Methods are
provided for the mean of a numeric vector ci.default
, the probability
of a binomial vector ci.binom
, and for lm
, lme
, and
mer
objects are provided.
ci(x, confidence = 0.95, alpha = 1 - confidence, ...) ## S3 method for class 'numeric' ci(x, confidence = 0.95, alpha = 1 - confidence, na.rm = FALSE, ...)
ci(x, confidence = 0.95, alpha = 1 - confidence, ...) ## S3 method for class 'numeric' ci(x, confidence = 0.95, alpha = 1 - confidence, na.rm = FALSE, ...)
x |
object from which to compute confidence intervals. |
confidence |
confidence level. Defaults to 0.95. |
alpha |
type one error rate. Defaults to 1.0- |
... |
Arguments for methods |
na.rm |
|
vector or matrix with one row per model parameter and
elements/columns Estimate
, CI lower
, CI upper
,
Std. Error
, DF
(for lme objects only), and p-value
.
Gregory R. Warnes [email protected]
stats::confint()
, stats::lm()
,
stats::summary.lm()
# mean and confidence interval ci( rnorm(10) ) # binomial proportion and exact confidence interval b <- rbinom( prob=0.75, size=1, n=20 ) ci.binom(b) # direct call class(b) <- 'binom' ci(b) # indirect call # confidence intervals for regression parameteres data(state) reg <- lm(Area ~ Population, data=as.data.frame(state.x77)) ci(reg)
# mean and confidence interval ci( rnorm(10) ) # binomial proportion and exact confidence interval b <- rbinom( prob=0.75, size=1, n=20 ) ci.binom(b) # direct call class(b) <- 'binom' ci(b) # indirect call # confidence intervals for regression parameteres data(state) reg <- lm(Area ~ Population, data=as.data.frame(state.x77)) ci(reg)
Fits a model to each subgroup defined by by
, then returns a data
frame with one row for each fit and one column for each parameter.
coefFrame( mod, data, by = NULL, fit.on = TRUE, fitfun, keep.unused.levels = TRUE, byvar.sep = "\001", ... )
coefFrame( mod, data, by = NULL, fit.on = TRUE, fitfun, keep.unused.levels = TRUE, byvar.sep = "\001", ... )
mod |
a model formula, to be passed to by |
data |
a data frame, row subsets of which will be used as the
|
by |
names of columns in |
fit.on |
a logical vector indicating which rows of |
fitfun |
a model fitting function (e.g. lm, nls). More specifically, a
function that expects at least a formula object (as the first argument) and
a data.frame object (passed as an argument named |
keep.unused.levels |
Include rows in output for all unique values of
|
byvar.sep |
passed to frameApply, used to form the subsets of the data. |
... |
other arguments to pass to |
a data frame with a row for each unique row of x[by]
, and
column for each model paramter, as well as columns specified in by
.
Jim Rogers [email protected]
# load example data library(gtools) data(ELISA) # Coefficients for four parameter logistic fits: coefFrame(log(Signal) ~ SSfpl(log(Concentration), A, B, xmid, scal), data = ELISA, fitfun = nls, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0) # Coefficients for linear fits: coefFrame(log(Signal) ~ log(Concentration), data = ELISA, fitfun = lm, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0 ) # Example passing arguments to fitfun, and example of # error handling during model fitting: ELISA$Signal[1] <- NA coefFrame(log(Signal) ~ log(Concentration), data = ELISA, fitfun = lm, na.action = na.fail, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0 )
# load example data library(gtools) data(ELISA) # Coefficients for four parameter logistic fits: coefFrame(log(Signal) ~ SSfpl(log(Concentration), A, B, xmid, scal), data = ELISA, fitfun = nls, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0) # Coefficients for linear fits: coefFrame(log(Signal) ~ log(Concentration), data = ELISA, fitfun = lm, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0 ) # Example passing arguments to fitfun, and example of # error handling during model fitting: ELISA$Signal[1] <- NA coefFrame(log(Signal) ~ log(Concentration), data = ELISA, fitfun = lm, na.action = na.fail, by = c("PlateDay", "Read"), fit.on = Description == "Standard" & Concentration != 0 )
An implementation of a cross-tabulation function with output similar to S-Plus crosstabs() and SAS Proc Freq (or SPSS format) with Chi-square, Fisher and McNemar tests of the independence of all table factors.
CrossTable( x, y, digits = 3, max.width = 5, expected = FALSE, prop.r = TRUE, prop.c = TRUE, prop.t = TRUE, prop.chisq = TRUE, chisq = FALSE, fisher = FALSE, mcnemar = FALSE, resid = FALSE, sresid = FALSE, asresid = FALSE, missing.include = FALSE, format = c("SAS", "SPSS"), dnn = NULL, ... )
CrossTable( x, y, digits = 3, max.width = 5, expected = FALSE, prop.r = TRUE, prop.c = TRUE, prop.t = TRUE, prop.chisq = TRUE, chisq = FALSE, fisher = FALSE, mcnemar = FALSE, resid = FALSE, sresid = FALSE, asresid = FALSE, missing.include = FALSE, format = c("SAS", "SPSS"), dnn = NULL, ... )
x |
A vector or a matrix. If y is specified, x must be a vector |
y |
A vector in a matrix or a dataframe |
digits |
Number of digits after the decimal point for cell proportions |
max.width |
In the case of a 1 x n table, the default will be to print the output horizontally. If the number of columns exceeds max.width, the table will be wrapped for each successive increment of max.width columns. If you want a single column vertical table, set max.width to 1 |
expected |
If |
prop.r |
If |
prop.c |
If |
prop.t |
If |
prop.chisq |
If |
chisq |
If |
fisher |
If |
mcnemar |
If |
resid |
If |
sresid |
If |
asresid |
If |
missing.include |
If |
format |
Either SAS (default) or SPSS, depending on the type of output desired. |
dnn |
the names to be given to the dimensions in the result (the dimnames names). |
... |
optional arguments |
A summary table will be generated with cell row, column and table proportions and marginal totals and proportions. Expected cell counts can be printed if desired (if 'chisq = TRUE'). In the case of a 2 x 2 table, both corrected and uncorrected values will be included for appropriate tests. In the case of tabulating a single vector, cell counts and table proportions will be printed.
Note: If 'x' is a vector and 'y' is not specified, no statistical tests will
be performed, even if any are set to TRUE
.
A list with multiple components including key table data and statistical test results, where performed.
t: An n by m matrix containing table cell counts
prop.col: An n by m matrix containing cell column proportions
prop.row: An n by m matrix containing cell row proportions
prop.tbl: An n by m matrix containing cell table proportions
chisq: Results from the Chi-Square test. A list with class 'htest'. See ?chisq.test for details
chisq.corr: Results from the corrected Chi-Square test. A list with class 'htest'. See ?chisq.test for details. ONLY included in the case of a 2 x 2 table.
fisher.ts: Results from the two-sided Fisher Exact test. A list with class 'htest'. See ?fisher.test for details. ONLY included if 'fisher' = TRUE.
fisher.lt: Results from the Fisher Exact test with HA = "less". A list with class 'htest'. See ?fisher.test for details. ONLY included if 'fisher' = TRUE and in the case of a 2 x 2 table.
fisher.gt: Results from the Fisher Exact test with HA = "greater". A list with class 'htest'. See ?fisher.test for details. ONLY included if 'fisher' = TRUE and in the case of a 2 x 2 table.
mcnemar: Results from the McNemar test. A list with class 'htest'. See ?mcnemar.test for details. ONLY included if 'mcnemar' = TRUE.
mcnemar.corr: Results from the corrected McNemar test. A list with class 'htest'. See ?mcnemar.test for details. ONLY included if 'mcnemar' = TRUE and in the case of a 2 x 2 table.
resid/sresid/asresid: Pearson Residuals (from chi-square tests).
Marc Schwartz [email protected]. Original version posted to r-devel on Jul 27, 2002. SPSS format modifications added by Nitin Jain based upon code provided by Dirk Enzmann [email protected]
stats::xtabs()
, base::table()
, base::prop.table()
# Simple cross tabulation of education versus prior induced abortions # using infertility data data(infert, package = "datasets") CrossTable(infert$education, infert$induced, expected = TRUE) CrossTable(infert$education, infert$induced, expected = TRUE, format="SAS") CrossTable(infert$education, infert$induced, expected = TRUE, format="SPSS") CrossTable(warpbreaks$wool, warpbreaks$tension, dnn = c("Wool", "Tension"))
# Simple cross tabulation of education versus prior induced abortions # using infertility data data(infert, package = "datasets") CrossTable(infert$education, infert$induced, expected = TRUE) CrossTable(infert$education, infert$induced, expected = TRUE, format="SAS") CrossTable(infert$education, infert$induced, expected = TRUE, format="SPSS") CrossTable(warpbreaks$wool, warpbreaks$tension, dnn = c("Wool", "Tension"))
Display estimate, confidence interval and p-value for one model term
est_p_ci(model, term, mult = 1, digits = 2, ...)
est_p_ci(model, term, mult = 1, digits = 2, ...)
model |
model object |
term |
model term |
mult |
scale (multiply) the parameter by this factor |
digits |
number of significant digits to display |
... |
optional arguments |
set.seed(42) # fit an example model with 3 groups y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) reg # show model estimate, p-value, and confidence interval # for the first group est_p_ci(reg, 2) # estimate some group contrasts cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) cont <- fit.contrast(reg, x, cmat, conf.int = 0.95) cont # show the contrast estimate, p-value, and confidence interval # for the first contrast est_p_ci(cont, 2:3)
set.seed(42) # fit an example model with 3 groups y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) reg # show model estimate, p-value, and confidence interval # for the first group est_p_ci(reg, 2) # estimate some group contrasts cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) cont <- fit.contrast(reg, x, cmat, conf.int = 0.95) cont # show the contrast estimate, p-value, and confidence interval # for the first contrast est_p_ci(cont, 2:3)
Compute and test contrasts and other estimable linear functions of model coefficients for for lm, glm, lme, mer, and geese objects
estimable(obj, cm, beta0, conf.int = NULL, show.beta0, ...) ## Default S3 method: estimable(obj, cm, beta0, conf.int = NULL, show.beta0, joint.test = FALSE, ...)
estimable(obj, cm, beta0, conf.int = NULL, show.beta0, ...) ## Default S3 method: estimable(obj, cm, beta0, conf.int = NULL, show.beta0, joint.test = FALSE, ...)
obj |
Regression (lm, glm, lme, mer, mlm) object. |
cm |
Vector, List, or Matrix specifying estimable linear functions or contrasts. See below for details. |
beta0 |
Vector of null hypothesis values |
conf.int |
Confidence level. If provided, confidence intervals will be computed. |
show.beta0 |
Logical value. If TRUE a column for beta0 will be included in the output table. Defaults to TRUE when beta0 is specified, FALSE otherwise. |
... |
ignored |
joint.test |
Logical value. If TRUE a 'joint' Wald test for the
hypothesis |
estimable
computes an estimate, test statitic, significance test, and
(optional) confidence interval for each linear functions of the model
coefficients specified by cm
.
The estimable function(s) may be specified via a vector, list, or matrix.
If cm
is a vector, it should contained named elements each of which
gives the coefficient to be applied to the corresponding parameter. These
coefficients will be used to construct the contrast matrix, with unspecified
model parameters assigned zero coefficients. If cm
is a list, it
should contain one or more coefficient vectors, which will be used to
construct rows of the contrast matrix. If cm
is a matrix, column
names must match (a subset of) the model parameters, and each row should
contain the corresponding coefficient to be applied. Model parameters which
are not present in the set of column names of cm
will be set to zero.
The estimates and their variances are obtained by applying the contrast
matrix (generated from) cm
to the model estimates variance-covariance
matrix. Degrees of freedom are obtained from the appropriate model terms.
The user is responsible for ensuring that the specified linear functions are meaningful.
For computing contrasts among levels of a single factor, fit.contrast
may be more convenient. For computing contrasts between two specific
combinations of model parameters, the contrast
function in Frank
Harrell's 'rms' library (formerly 'Design') may be more convenient.
%The .wald
function is called internally by estimable
and %is
not intended for direct use.
Returns a matrix with one row per linear function. Columns contain
the beta0 value (optional, see show.beta0
above), estimated
coefficients, standard errors, t values, degrees of freedom, two-sided
p-values, and the lower and upper endpoints of the 1-alpha confidence
intervals.
The estimated fixed effect parameters of lme
objects may have
different degrees of freedom. If a specified contrast includes nonzero
coefficients for parameters with differing degrees of freedom, the smallest
number of degrees of freedom is used and a warning message is issued.
BXC (Bendix Carstensen) [email protected], Gregory R. Warnes [email protected], Soren Hojsgaard [email protected], and Randall C Johnson [email protected]
fit.contrast()
, stats::lm()
,
nlme::lme()
, stats::contrasts()
,
rms::contrast()
# setup example data y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) levels(x) <- c("A","B","C","D") x2 <- rnorm(100, mean=y, sd=0.5) # simple contrast and confidence interval reg <- lm(y ~ x) estimable(reg, c( 0, 1, 0, -1) ) # full coefficient vector estimable(reg, c("xB"=1,"xD"=-1) ) # just the nonzero terms # Fit a spline with a single knot at 0.5 and plot the *pointwise* # confidence intervals library(gplots) pm <- pmax(x2-0.5, 0) # knot at 0.5 reg2 <- lm(y ~ x + x2 + pm ) range <- seq(-2, 2, , 50) tmp <- estimable(reg2, cm=cbind( '(Intercept)'=1, 'xC'=1, 'x2'=range, 'pm'=pmax(range-0.5, 0) ), conf.int=0.95) plotCI(x=range, y=tmp[, 1], li=tmp[, 6], ui=tmp[, 7]) # Fit both linear and quasi-Poisson models to iris data, then compute # joint confidence intervals on contrasts for the Species and # Sepal.Width by Species interaction terms. data(iris) lm1 <- lm (Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris) glm1 <- glm(Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris, family=quasipoisson("identity")) cm <- rbind( 'Setosa vs. Versicolor' = c(0, 0, 1, 0, 1, 0), 'Setosa vs. Virginica' = c(0, 0, 0, 1, 0, 1), 'Versicolor vs. Virginica'= c(0, 0, 1,-1, 1,-1) ) estimable(lm1, cm) estimable(glm1, cm)
# setup example data y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) levels(x) <- c("A","B","C","D") x2 <- rnorm(100, mean=y, sd=0.5) # simple contrast and confidence interval reg <- lm(y ~ x) estimable(reg, c( 0, 1, 0, -1) ) # full coefficient vector estimable(reg, c("xB"=1,"xD"=-1) ) # just the nonzero terms # Fit a spline with a single knot at 0.5 and plot the *pointwise* # confidence intervals library(gplots) pm <- pmax(x2-0.5, 0) # knot at 0.5 reg2 <- lm(y ~ x + x2 + pm ) range <- seq(-2, 2, , 50) tmp <- estimable(reg2, cm=cbind( '(Intercept)'=1, 'xC'=1, 'x2'=range, 'pm'=pmax(range-0.5, 0) ), conf.int=0.95) plotCI(x=range, y=tmp[, 1], li=tmp[, 6], ui=tmp[, 7]) # Fit both linear and quasi-Poisson models to iris data, then compute # joint confidence intervals on contrasts for the Species and # Sepal.Width by Species interaction terms. data(iris) lm1 <- lm (Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris) glm1 <- glm(Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris, family=quasipoisson("identity")) cm <- rbind( 'Setosa vs. Versicolor' = c(0, 0, 1, 0, 1, 0), 'Setosa vs. Virginica' = c(0, 0, 0, 1, 0, 1), 'Versicolor vs. Virginica'= c(0, 0, 1,-1, 1,-1) ) estimable(lm1, cm) estimable(glm1, cm)
The standard stats::prcomp()
and svd()
function are
very inefficient for wide matrixes. fast.prcomp
and fast.svd
are modified versions which are efficient even for matrixes that are very
wide.
fast.prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL)
fast.prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL)
x |
data matrix |
retx |
a logical value indicating whether the rotated variables should be returned. |
center |
a logical value indicating whether the variables
should be shifted to be zero centered. Alternately, a vector of
length equal the number of columns of |
scale. |
a logical value indicating whether the variables should
be scaled to have unit variance before the analysis takes
place. The default is |
tol |
a value indicating the magnitude below which components
should be omitted. (Components are omitted if their
standard deviations are less than or equal to |
The current implementation of the function svd()
in S-Plus and R
is much slower when operating on a matrix with a large number of columns
than on the transpose of this matrix, which has a large number of rows. As a
consequence, stats::prcomp()
, which uses svd()
, is
also very slow when applied to matrixes with a large number of rows.
The simple solution is to use La.svd()
instead of
svd()
. A suitable patch to stats::prcomp()
has been
submitted. In the mean time, the function fast.prcomp
has been
provided as a short-term work-around.
is a modified versiom of
stats::prcomp()
that calls La.svd()
instead of
svd()
is simply a wrapper around
La.svd()
.
See the documetation for stats::prcomp()
or
svd()
.
Modifications by Gregory R. Warnes [email protected]
stats::prcomp()
, base::svd()
, base::La.svd()
# create test matrix set.seed(4943546) nr <- 50 nc <- 2000 x <- matrix( rnorm( nr*nc), nrow=nr, ncol=nc ) tx <- t(x) # SVD directly on matrix is SLOW: system.time( val.x <- svd(x)$u ) # SVD on t(matrix) is FAST: system.time( val.tx <- svd(tx)$v ) # and the results are equivalent: max( abs(val.x) - abs(val.tx) ) # Time gap dissapears using fast.svd: system.time( val.x <- fast.svd(x)$u ) system.time( val.tx <- fast.svd(tx)$v ) max( abs(val.x) - abs(val.tx) ) library(stats) # prcomp directly on matrix is SLOW: system.time( pr.x <- prcomp(x) ) # prcomp.fast is much faster system.time( fast.pr.x <- fast.prcomp(x) ) # and the results are equivalent max( pr.x$sdev - fast.pr.x$sdev ) max( abs(pr.x$rotation[,1:49]) - abs(fast.pr.x$rotation[,1:49]) ) max( abs(pr.x$x) - abs(fast.pr.x$x) ) # (except for the last and least significant component): max( abs(pr.x$rotation[,50]) - abs(fast.pr.x$rotation[,50]) )
# create test matrix set.seed(4943546) nr <- 50 nc <- 2000 x <- matrix( rnorm( nr*nc), nrow=nr, ncol=nc ) tx <- t(x) # SVD directly on matrix is SLOW: system.time( val.x <- svd(x)$u ) # SVD on t(matrix) is FAST: system.time( val.tx <- svd(tx)$v ) # and the results are equivalent: max( abs(val.x) - abs(val.tx) ) # Time gap dissapears using fast.svd: system.time( val.x <- fast.svd(x)$u ) system.time( val.tx <- fast.svd(tx)$v ) max( abs(val.x) - abs(val.tx) ) library(stats) # prcomp directly on matrix is SLOW: system.time( pr.x <- prcomp(x) ) # prcomp.fast is much faster system.time( fast.pr.x <- fast.prcomp(x) ) # and the results are equivalent max( pr.x$sdev - fast.pr.x$sdev ) max( abs(pr.x$rotation[,1:49]) - abs(fast.pr.x$rotation[,1:49]) ) max( abs(pr.x$x) - abs(fast.pr.x$x) ) # (except for the last and least significant component): max( abs(pr.x$rotation[,50]) - abs(fast.pr.x$rotation[,50]) )
Compute and test arbitrary contrasts for regression objects.
fit.contrast(model, varname, coeff, showall, conf.int, df, ...)
fit.contrast(model, varname, coeff, showall, conf.int, df, ...)
model |
regression (lm,glm,aov,lme) object for which the contrast(s) will be computed. |
varname |
variable name |
coeff |
vector or matrix specifying contrasts (one per row). |
showall |
return all regression coefficients. If |
conf.int |
numeric value on (0,1) or NULL. If a numeric value is
specified, confidence intervals with nominal coverage probability
|
df |
boolean indicating whether to return a column containing the degrees of freedom. |
... |
optional arguments provided by methods. |
Computes the specified contrast(s) by re-fitting the model with the
appropriate arguments. A contrast of the form c(1,0,0,-1)
would
compare the mean of the first group with the mean of the fourth group.
Returns a matrix containing estimated coefficients, standard errors,
t values, two-sided p-values. If df
is TRUE, an additional column
containing the degrees of freedom is included. If conf.int
is
specified lower and upper confidence limits are also returned.
Gregory R. Warnes [email protected]
Venables & Ripley, Section 6.2
stats::lm()
, stats::contrasts()
, stats::contr.treatment()
, stats::contr.poly()
,
Computation and testing of General Linear Hypothesis: glh.test()
,
Computation and testing of estimable functions of model coefficients: estimable()
, make.contrasts()
set.seed(42) y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) summary(reg) # look at the group means gm <- sapply(split(y,x),mean) gm # mean of 1st group vs mean of 4th group fit.contrast(reg, x, c( 1, 0, 0, -1) ) # estimate should be equal to: gm[1] - gm[4] # mean of 1st and 2nd groups vs mean of 3rd and 4th groups fit.contrast(reg, x, c( -1/2, -1/2, 1/2, 1/2) ) # estimate should be equal to: sum(-1/2*gm[1], -1/2*gm[2], 1/2*gm[3], 1/2*gm[4]) # mean of 1st group vs mean of 2nd, 3rd and 4th groups fit.contrast(reg, x, c( -3/3, 1/3, 1/3, 1/3) ) # estimate should be equal to: sum(-3/3*gm[1], 1/3*gm[2], 1/3*gm[3], 1/3*gm[4]) # all at once cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) fit.contrast(reg,x,cmat) # x2 <- rnorm(100,mean=y,sd=0.5) reg2 <- lm(y ~ x + x2 ) fit.contrast(reg2,x,c(-1,0,0,1)) # # Example for Analysis of Variance # set.seed(03215) Genotype <- sample(c("WT","KO"), 1000, replace=TRUE) Time <- factor(sample(1:3, 1000, replace=TRUE)) y <- rnorm(1000) data <- data.frame(y, Genotype, Time) # Compute Contrasts & obtain 95% confidence intervals model <- aov( y ~ Genotype + Time + Genotype:Time, data=data ) fit.contrast( model, "Genotype", rbind("KO vs WT"=c(-1,1) ), conf=0.95 ) fit.contrast( model, "Time", rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ), conf=0.95 ) cm.G <- rbind("KO vs WT"=c(-1,1) ) cm.T <- rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ) # Compute contrasts and show SSQ decompositions model <- aov( y ~ Genotype + Time + Genotype:Time, data=data, contrasts=list(Genotype=make.contrasts(cm.G), Time=make.contrasts(cm.T) ) ) summary(model, split=list( Genotype=list( "KO vs WT"=1 ), Time = list( "1 vs 2" = 1, "2 vs 3" = 2 ) ) ) # example for lme library(nlme) data(Orthodont) fm1 <- lme(distance ~ Sex, data = Orthodont,random=~1|Subject) # Contrast for sex. This example is equivalent to standard treatment # contrast. # fit.contrast(fm1, "Sex", c(-1,1), conf.int=0.95 ) # # and identical results can be obtained using lme built-in 'intervals' # intervals(fm1) # Cut age into quantile groups & compute some contrasts Orthodont$AgeGroup <- gtools::quantcut(Orthodont$age) fm2 <- lme(distance ~ Sex + AgeGroup, data = Orthodont,random=~1|Subject) # fit.contrast(fm2, "AgeGroup", rbind("Linear"=c(-2,-1,1,2), "U-Shaped"=c(-1,1,1,-1), "Change-Point at 11"=c(-1,-1,1,1)), conf.int=0.95)
set.seed(42) y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) summary(reg) # look at the group means gm <- sapply(split(y,x),mean) gm # mean of 1st group vs mean of 4th group fit.contrast(reg, x, c( 1, 0, 0, -1) ) # estimate should be equal to: gm[1] - gm[4] # mean of 1st and 2nd groups vs mean of 3rd and 4th groups fit.contrast(reg, x, c( -1/2, -1/2, 1/2, 1/2) ) # estimate should be equal to: sum(-1/2*gm[1], -1/2*gm[2], 1/2*gm[3], 1/2*gm[4]) # mean of 1st group vs mean of 2nd, 3rd and 4th groups fit.contrast(reg, x, c( -3/3, 1/3, 1/3, 1/3) ) # estimate should be equal to: sum(-3/3*gm[1], 1/3*gm[2], 1/3*gm[3], 1/3*gm[4]) # all at once cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) fit.contrast(reg,x,cmat) # x2 <- rnorm(100,mean=y,sd=0.5) reg2 <- lm(y ~ x + x2 ) fit.contrast(reg2,x,c(-1,0,0,1)) # # Example for Analysis of Variance # set.seed(03215) Genotype <- sample(c("WT","KO"), 1000, replace=TRUE) Time <- factor(sample(1:3, 1000, replace=TRUE)) y <- rnorm(1000) data <- data.frame(y, Genotype, Time) # Compute Contrasts & obtain 95% confidence intervals model <- aov( y ~ Genotype + Time + Genotype:Time, data=data ) fit.contrast( model, "Genotype", rbind("KO vs WT"=c(-1,1) ), conf=0.95 ) fit.contrast( model, "Time", rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ), conf=0.95 ) cm.G <- rbind("KO vs WT"=c(-1,1) ) cm.T <- rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ) # Compute contrasts and show SSQ decompositions model <- aov( y ~ Genotype + Time + Genotype:Time, data=data, contrasts=list(Genotype=make.contrasts(cm.G), Time=make.contrasts(cm.T) ) ) summary(model, split=list( Genotype=list( "KO vs WT"=1 ), Time = list( "1 vs 2" = 1, "2 vs 3" = 2 ) ) ) # example for lme library(nlme) data(Orthodont) fm1 <- lme(distance ~ Sex, data = Orthodont,random=~1|Subject) # Contrast for sex. This example is equivalent to standard treatment # contrast. # fit.contrast(fm1, "Sex", c(-1,1), conf.int=0.95 ) # # and identical results can be obtained using lme built-in 'intervals' # intervals(fm1) # Cut age into quantile groups & compute some contrasts Orthodont$AgeGroup <- gtools::quantcut(Orthodont$age) fm2 <- lme(distance ~ Sex + AgeGroup, data = Orthodont,random=~1|Subject) # fit.contrast(fm2, "AgeGroup", rbind("Linear"=c(-2,-1,1,2), "U-Shaped"=c(-1,1,1,-1), "Change-Point at 11"=c(-1,-1,1,1)), conf.int=0.95)
Test, print, or summarize a general linear hypothesis for a regression model
glh.test(reg, cm, d = rep(0, nrow(cm)))
glh.test(reg, cm, d = rep(0, nrow(cm)))
reg |
Regression model |
cm |
contrast matrix |
d |
vector |
Test the general linear hypothesis for the regression model
reg
.
The test statistic is obtained from the formula:
where
r
is the number of contrasts contained in C
, and
n-p
is the model degrees of freedom.
Under the null hypothesis, f
will follow a F-distribution with r
and n-p
degrees of freedom
Object of class c("glh.test","htest")
with elements:
call |
Function call that created the object |
statistic |
F statistic |
parameter |
vector containing the numerator (r) and denominator (n-p) degrees of freedom |
p.value |
p-value |
estimate |
computed estimate for each row of |
null.value |
d |
method |
description of the method |
data.name |
name of the model given for |
matrix |
matrix specifying the general linear hypotheis ( |
When using treatment contrasts (the default) the first level of the factors are subsumed into the intercept term. The estimated model coefficients are then contrasts versus the first level. This should be taken into account when forming contrast matrixes, particularly when computing contrasts that include 'baseline' level of factors.
See the comparison with fit.contrast
in the examples below.
Gregory R. Warnes [email protected]
R.H. Myers, Classical and Modern Regression with Applications, 2nd Ed, 1990, p. 105
fit.contrast()
, estimable()
, stats::contrasts()
# fit a simple model y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) summary(reg) # test both group 1 = group 2 and group 3 = group 4 # *Note the 0 in the column for the intercept term* C <- rbind( c(0,-1,0,0), c(0,0,-1,1) ) ret <- glh.test(reg, C) ret # same as 'print(ret) ' summary(ret) # To compute a contrast between the first and second level of the factor # 'x' using 'fit.contrast' gives: fit.contrast( reg, x,c(1,-1,0,0) ) # To test this same contrast using 'glh.test', use a contrast matrix # with a zero coefficient for the intercept term. See the Note section, # above, for an explanation. C <- rbind( c(0,-1,0,0) ) glh.test( reg, C )
# fit a simple model y <- rnorm(100) x <- cut(rnorm(100, mean=y, sd=0.25),c(-4,-1.5,0,1.5,4)) reg <- lm(y ~ x) summary(reg) # test both group 1 = group 2 and group 3 = group 4 # *Note the 0 in the column for the intercept term* C <- rbind( c(0,-1,0,0), c(0,0,-1,1) ) ret <- glh.test(reg, C) ret # same as 'print(ret) ' summary(ret) # To compute a contrast between the first and second level of the factor # 'x' using 'fit.contrast' gives: fit.contrast( reg, x,c(1,-1,0,0) ) # To test this same contrast using 'glh.test', use a contrast matrix # with a zero coefficient for the intercept term. See the Note section, # above, for an explanation. C <- rbind( c(0,-1,0,0) ) glh.test( reg, C )
This function converts human-readable contrasts into the form that R requires for computation.
make.contrasts(contr, how.many = ncol(contr))
make.contrasts(contr, how.many = ncol(contr))
contr |
vector or matrix specifying contrasts (one per row). |
how.many |
dimensions of the desired contrast matrix. This must equal the number of levels of the target factor variable. |
Specifying a contrast row of the form c(1,0,0,-1)
creates a contrast
that will compare the mean of the first group with the mean of the fourth
group.
make.contrasts
returns a matrix with dimensions
(how.many
, how.many
) containing the specified contrasts
augmented (if necessary) with orthogonal "filler" contrasts.
This matrix can then be used as the argument to contrasts()
or
to the contrasts
argument of model functions (eg, lm()
).
Gregory R. Warnes [email protected]
stats::lm()
, stats::contrasts()
, stats::contr.treatment()
,
stats::contr.poly()
,
Computation and testing of General Linear Hypothesis: glh.test()
,
Computation and testing of estimable functions of model coefficients:
estimable()
,
Estimate and Test Contrasts for a previously fit linear model:
fit.contrast()
set.seed(4684) y <- rnorm(100) x.true <- rnorm(100, mean=y, sd=0.25) x <- factor(cut(x.true,c(-4,-1.5,0,1.5,4))) reg <- lm(y ~ x) summary(reg) # Mirror default treatment contrasts test <- make.contrasts(rbind( c(-1,1,0,0), c(-1,0,1,0), c(-1,0,0,1) )) lm( y ~ x, contrasts=list(x = test )) # Specify some more complicated contrasts # - mean of 1st group vs mean of 4th group # - mean of 1st and 2nd groups vs mean of 3rd and 4th groups # - mean of 1st group vs mean of 2nd, 3rd and 4th groups cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) summary(lm( y ~ x, contrasts=list(x=make.contrasts(cmat) ))) # or contrasts(x) <- make.contrasts(cmat) summary(lm( y ~ x ) ) # or use contrasts.lm reg <- lm(y ~ x) fit.contrast( reg, "x", cmat ) # compare with values computed directly using group means gm <- sapply(split(y,x),mean) gm %*% t(cmat) # # Example for Analysis of Variance # set.seed(03215) Genotype <- sample(c("WT","KO"), 1000, replace=TRUE) Time <- factor(sample(1:3, 1000, replace=TRUE)) data <- data.frame(y, Genotype, Time) y <- rnorm(1000) data <- data.frame(y, Genotype, as.factor(Time)) # Compute Contrasts & obtain 95% confidence intervals model <- aov( y ~ Genotype + Time + Genotype:Time, data=data ) fit.contrast( model, "Genotype", rbind("KO vs WT"=c(-1,1) ), conf=0.95 ) fit.contrast( model, "Time", rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ), conf=0.95 ) cm.G <- rbind("KO vs WT"=c(-1,1) ) cm.T <- rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ) # Compute contrasts and show SSQ decompositions model <- model <- aov( y ~ Genotype + Time + Genotype:Time, data=data, contrasts=list(Genotype=make.contrasts(cm.G), Time=make.contrasts(cm.T) ) ) summary(model, split=list( Genotype=list( "KO vs WT"=1 ), Time = list( "1 vs 2" = 1, "2 vs 3" = 2 ) ) )
set.seed(4684) y <- rnorm(100) x.true <- rnorm(100, mean=y, sd=0.25) x <- factor(cut(x.true,c(-4,-1.5,0,1.5,4))) reg <- lm(y ~ x) summary(reg) # Mirror default treatment contrasts test <- make.contrasts(rbind( c(-1,1,0,0), c(-1,0,1,0), c(-1,0,0,1) )) lm( y ~ x, contrasts=list(x = test )) # Specify some more complicated contrasts # - mean of 1st group vs mean of 4th group # - mean of 1st and 2nd groups vs mean of 3rd and 4th groups # - mean of 1st group vs mean of 2nd, 3rd and 4th groups cmat <- rbind( "1 vs 4" =c(-1, 0, 0, 1), "1+2 vs 3+4"=c(-1/2,-1/2, 1/2, 1/2), "1 vs 2+3+4"=c(-3/3, 1/3, 1/3, 1/3)) summary(lm( y ~ x, contrasts=list(x=make.contrasts(cmat) ))) # or contrasts(x) <- make.contrasts(cmat) summary(lm( y ~ x ) ) # or use contrasts.lm reg <- lm(y ~ x) fit.contrast( reg, "x", cmat ) # compare with values computed directly using group means gm <- sapply(split(y,x),mean) gm %*% t(cmat) # # Example for Analysis of Variance # set.seed(03215) Genotype <- sample(c("WT","KO"), 1000, replace=TRUE) Time <- factor(sample(1:3, 1000, replace=TRUE)) data <- data.frame(y, Genotype, Time) y <- rnorm(1000) data <- data.frame(y, Genotype, as.factor(Time)) # Compute Contrasts & obtain 95% confidence intervals model <- aov( y ~ Genotype + Time + Genotype:Time, data=data ) fit.contrast( model, "Genotype", rbind("KO vs WT"=c(-1,1) ), conf=0.95 ) fit.contrast( model, "Time", rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ), conf=0.95 ) cm.G <- rbind("KO vs WT"=c(-1,1) ) cm.T <- rbind("1 vs 2"=c(-1,1,0), "2 vs 3"=c(0,-1,1) ) # Compute contrasts and show SSQ decompositions model <- model <- aov( y ~ Genotype + Time + Genotype:Time, data=data, contrasts=list(Genotype=make.contrasts(cm.G), Time=make.contrasts(cm.T) ) ) summary(model, split=list( Genotype=list( "KO vs WT"=1 ), Time = list( "1 vs 2" = 1, "2 vs 3" = 2 ) ) )